Practice 13

Topic: Research on stability by the second (direct) method of Lyapunov,
using Schultz-Gibson's method

Example  Let system dynamic equations in the state-space with are set the
following look:

2

. 3 ; xeR?,
X, ==X

Investigate on stability by the second (direct) method of Lyapunov, using
Schultz-Gibson's method.
Algorithm and solution

1. The gradient of function of Lyapunov in the form of Schultz — Gibson as
follows registers:
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2. The full derivative of function of Lyapunov is defined:
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3. It is necessary to define such ¢;; values that the full derivative of function
of Lyapunov was strictly negative, i.e. V(x) <O0.

Let o1=1; a=-om1; on=-1; oxn=1.

Then
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At such choice of coefficients «;; we will receive the following:
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4. It is necessary to define Lyapunov's function and to be convinced that
V(x)>0.

Define Lyapunov's function by V(x), we will substitute the found coefficients
in a gradient (**):
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Having used expression (*), we will obtain Lyapunov's function of the
following look:
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Hence, the initial system is asymptotically stable according to Lyapunov.

It is reasonable to emphasize the basic conclusions once more:
{V >0 — function must be one of fixed positive-sign;
a)

<o — differential must be one of strictly negative-sign, which provides
asymptomatically stability to the system according to Lyapunov.

— its full differential may be one of fixed negative-sign, which

provides stability to the system according to Lyapunov.

) V>0 — function should be one of fixed positive-sign;
V<0

V>0 — the both functions are of fixed positive-sign, which provides
c) instability to the system according to Lyapunov.
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Task: Obtain dynamic equations of nonlinear ACS in the state-space
according to the set scheme (by variants). Investigate on stability by the second
(direct) method of Lyapunov, using Schultz-Gibson's method.
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