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Practice 13 

 

Topic: Research on stability by the second (direct) method of Lyapunov, 

 using Schultz-Gibson's method 

 

 Example    Let system dynamic equations in the state-space with are set the 

following look: 
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Investigate on stability by the second (direct) method of Lyapunov, using 

Schultz-Gibson's method. 

Algorithm and solution 

 

1. The gradient of function of Lyapunov in the form of Schultz – Gibson as 

follows registers: 
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2. The full derivative of function of Lyapunov is defined: 
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3. It is necessary to define such  ij  values that the full derivative of function 

of Lyapunov was strictly negative, i.e.  .0)( xV  

 Let   11=1;   12=-21;   12=-1;  21=1. 

 Then 
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From here  

                     22=
1 12

2

1

2

1

2

2

2

1

2


 

x

x x

x

x
.  

 

At such choice of coefficients  ij   we will receive the following: 
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4. It is necessary to define Lyapunov's function and to be convinced that 

V(x)>0. 

 Define Lyapunov's function by V(x), we will substitute the found coefficients 

in a gradient (**): 
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Having used expression (*), we will obtain Lyapunov's function of the 

following look: 
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Hence, the initial system is asymptotically stable according to Lyapunov. 

 

It is reasonable to emphasize the basic conclusions once more: 
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 –  function must be one of fixed positive-sign;  

 – differential must be one of strictly negative-sign, which provides 

asymptomatically stability to the system according to Lyapunov.  
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 –  function should be one of fixed positive-sign; 

 –  its full differential may be one of fixed negative-sign, which 

provides stability to the system according to Lyapunov. 
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 –  the both functions are of fixed positive-sign, which provides 

instability to the system according to Lyapunov.  

 

Task:  Obtain dynamic equations of nonlinear ACS in the state-space 

according to the set scheme (by variants). Investigate on stability by the second 

(direct) method of Lyapunov, using Schultz-Gibson's method. 

 

Variants: 
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